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Abstract—Integrating Transformer-based models such as
BERT into resource-constrained edge environments remains a
demanding task, primarily due to their intensive processing
needs and high memory consumption. The proposed framework
employs a structured combination of pruning, quantization, and
knowledge distillation to significantly reduce model size and
computational load, with minimal impact on accuracy. Our
optimized DistilBERT attains around 90% accuracy on the SST-2
sentiment dataset, maintaining performance close to the original
DistilBERT (91-92%), while significantly decreasing model size
by approximately eightfold and improving inference speed by
2-3 times. Through rigorous comparisons with existing compact
models such as TinyBERT and MobileBERT, our results highlight
superior performance-to-efficiency ratios.

Index Terms—Transformer Models, DistilBERT, Edge Com-
puting, Sentiment Analysis, Model Compression, Pruning, Quan-
tization, Knowledge Distillation, TensorFlow, Text Classification

I. INTRODUCTION

Advances in NLP have been largely attributed to Trans-
former architectures, notably BERT, which has delivered lead-
ing performance across numerous benchmarks. However, the
significant resource demands of these models restrict their de-
ployment on edge devices with limited processing capabilities.
However, their large size and high computational demands hin-
der the deployment of resource-limited edge devices such as
smartphones and IoT systems. The BERT-base, with more than
110 million parameters, incurs substantial inference latency
(e.g., 1.7 seconds on a mobile CPU) [2], making real-time
applications impractical.

In response to these constraints, smaller alternatives such
as DistilBERT [3], TinyBERT [4], and MobileBERT [2]
have been introduced. DistilBERT, for instance, compresses
the original BERT model by approximately 40%, maintaining
nearly 97% of its effectiveness through the application of
knowledge distillation techniques [3].Yet, with 66 million
parameters, even DistilBERT remains demanding for edge
devices lacking accelerators, highlighting the need for further
optimization.

This underscores the necessity for additional efficiency im-
provements. Strategies like pruning, quantization, and knowl-
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edge distillation [17] provide practical approaches to stream-
line models. In particular, magnitude-based pruning elimi-
nates less significant weight parameters, helping reduce model
complexity without major loss in accuracy [5]; quantization
reduces 32-bit precision to 8-bit integers, lowering memory
and improving speed [6]; and distillation enables small models
to mimic large ones [4]. However, each method alone has
trade-offs: unstructured pruning limits speedups on standard
hardware, aggressive quantization may degrade accuracy, and
distilled models still retain significant size [5], [6].

To overcome these challenges, we propose a unified com-
pression pipeline that combines structured pruning, post-
training quantization, and task-specific knowledge distillation
to further compress DistilBERT for sentiment analysis on edge
devices. Unlike prior works that redesign architectures, we
start with DistilBERT and apply multistage compression to
preserve performance while improving efficiency.

We evaluated our method in the Stanford Sentiment Tree-
bank (SST-2), a standard binary sentiment classification bench-
mark [7]. Our optimized model attains an accuracy of 90%,
which is comparable to the original DistilBERT’s 91%, while
achieving an eightfold reduction in model size (from 250 MB
to 45MB) and improving the inference latency by 2-3x.
Comparisons with TinyBERT and MobileBERT validate the
efficiency—accuracy balance of our approach, supporting its
deployment potential on real-world edge hardware.

II. RELATED WORK

Deploying large language models such as BERT in envi-
ronments with strict latency and hardware constraints remains
challenging due to their intensive computational and memory
requirements. This has prompted extensive research into com-
pression techniques that reduce inference cost and model size
without compromising task performance.

Notably, knowledge distillation has emerged as a partic-
ularly effective technique. DistilBERT [3] transfers knowl-
edge of BERT to a more compact model, reducing size by
40% and accelerating inference with minimal performance
loss. TinyBERT [4] enhances this by applying a two-stage
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distillation process, while MobileBERT [2] restructures the
architecture for mobile optimization. Fast DistilBERT [20]
combines pruning, quantization, and distillation to achieve
high throughput on CPUs.

Compression methods like structured pruning remove unim-
portant layers or attention heads [24], and quantization
reduces precision to 8-bit integers [6], significantly improving
efficiency. These techniques are often more powerful when
combined.

This study proposes an integrated approach combining
structured pruning, knowledge distillation, and post-training
quantization to create a lightweight yet accurate DistilBERT
variant. The resulting model delivers competitive accuracy
with significantly reduced inference time and memory foot-
print, making it suitable for real-time edge deployments.

In summary, we demonstrate that a synergistic compression
pipeline enables the deployment of Transformer-based models
on constrained systems while preserving the performance,
offering a practical path forward for on-device NLP.

I[II. METHODOLOGY

DistilBERT retains the Transformer encoder structure of
BERT, featuring six layers, a hidden representation of size
768, and a total of 12 attention heads, but omits token-
type embeddings and the pooler layers, reducing parameters
from approximately 110M in BERT-base to about 66M [3].
It leverages knowledge distillation during pre-training using
a triple-loss strategy: masked language modeling (MLM),
hidden-state matching, and embedding alignment [13]. We
propose two student variants for further optimization:

o Student A: Retains the full DistilBERT architecture
while applying weight pruning and quantization.

e Student B: Employs structured pruning by reducing
attention heads and feed-forward network (FFN) neurons,
offering increased efficiency at the expense of slightly
lower accuracy.

For most experiments, we focus on Student A, designated

as DistilBERT-Optim.

A. Compression Stages

Our optimization pipeline comprises three sequential tech-
niques:

1) Pruning: We apply magnitude-based unstructured prun-
ing post fine-tuning, targeting 50% global sparsity [13]. Ten-
sorFlow Model Optimization Toolkit (TF-MOT) wraps dense
layers with a pruning schedule over three epochs, significantly
reducing computational complexity and theoretical floating-
point operations (FLOPs).

2) Quantization: Post-training quantization (PTQ) was
applied to reduce model precision by converting parameters
from 32-bit precision to INT8 format, utilizing the Tensor-
Flow Lite framework [14]. Calibration is conducted using a
small representative dataset. This method reduces model size
drastically (from approximately 250 MB to 45 MB), achieving
a 2-3x speedup on CPU inference with minimal accuracy loss
(<0.5%). Figure 1 illustrates this compression pipeline.
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Figure: Optimized DistilBERT Compression Pipeline
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Fig. 1. Performance vs. Efficiency: Accuracy and latency of BERT-base,
DistilBERT, and our optimized DistilBERT model.

3) Knowledge Distillation (KD): KD fine-tunes the com-
pressed model using the original DistilBERT as a teacher. We
employ a combined loss function defined as:

Lxp=1—-a)lep(y,z)+al’Lkr (U (%T) HU (ZTS>>

Here, z, and zr represent student and teacher logits, re-
spectively, y denotes ground-truth labels, o(-) is the softmax
function, = 0.5, and T' = 2. This KD approach enhances
student accuracy from approximately 90.0% to 90.8%, effec-
tively narrowing the gap to the teacher model (91.5%) [15].

IV. EXPERIMENTAL SETUP

A. Datasets

This study makes use of the Stanford Sentiment Treebank
version 2 (SST-2) dataset [18], which is part of the GLUE
benchmark suite and commonly used for evaluating binary
sentiment classification models [18] SST-2 comprises concise
movie review sentences annotated with positive or negative
sentiment labels.

Minimal preprocessing is applied, relying primarily on
the tokenizer. Sentences are lowercased and whitespace-
normalized; no additional linguistic preprocessing such as
stemming or stop-word removal is performed, aligning with
best practices for fine-tuning Transformer models [9].

The SST-2 dataset maintains an even distribution of positive
and negative sentiment labels, allowing for reliable accuracy-
focused assessment. A detailed overview of its attributes is
provided in Table 1.

TABLE I
SST-2 DATASET STATISTICS
Split Samples | Avg. Length | Label Distribution
(Pos:Neg)
Training 67,349 19.6 tokens Approx. 1:1
Validation 872 18.9 tokens Approx. 1:1

B. Data Preprocessing and Tokenization
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Text preprocessing was performed using the Hugging Face
Transformers library’s DistilBertTokenizerFast,
which applies WordPiece tokenization based on BERT’s
uncased 30k vocabulary [10]. Input texts were modified to fit
a fixed token length of 128 by either trimming excess tokens
or appending padding tokens as needed. This limit effectively
covers more than 98% of SST-2 entries, considering the
dataset’s average sentence length of 19 tokens.

Padding was applied using the [PAD] token to ensure
alignment to 8-token multiples for efficient batch processing.
Tokenization generated both input IDs and attention masks to
differentiate actual tokens from padding.

The input sequences were transformed into TensorFlow
Dataset objects using batches of 32 examples. During train-
ing, data was dynamically padded and randomly shuffled for
each batch, whereas the validation data remained unchanged.
Sentiment labels were represented using a binary encoding
scheme, where negative sentiments corresponded to 0 and
positive to 1. All preprocessing was conducted within the
Google Colab environment, and model/tokenizer artifacts were
locally cached to support offline inference—crucial for edge
deployments with limited connectivity [11].

C. Fine-Tuning the DistilBERT Baseline We adopt
DistilBERT-base (uncased) from Hugging Face as our baseline
model [12]. To enable binary sentiment classification, a
dense output layer was added on top of DistilBERT’s pooled
representation. The entire architecture was then fine-tuned on
the SST-2 training data in an end-to-end manner.

Model training was carried out on a Google Colab envi-
ronment equipped with an NVIDIA Tesla T4 GPU, utilizing
mixed-precision computation (FP16). The model was opti-
mized using Adam optimizer, starting with a learning rate
set to 2 x 10™%, accompanied by a linear decay schedule
and a weight decay factor of 0.01. To ensure stable updates,
gradients were clipped at a norm of 1.0 [19]. Training spanned
three epochs using batches of 32 samples, selected based on
the memory constraints of the Colab hardware.

Validation accuracy improved consistently across epochs,
reaching 91.5%, which is in line with prior benchmarks for
DistilBERT on SST-2 [1]. This performance corresponds
to approximately 98% of BERT-base’s accuracy (93-94%)
[1], while being significantly smaller in size. The accuracy
progression during training is shown in Fig. 2. The final model
checkpoint was retained as both a baseline and the teacher
model for subsequent distillation.

V. EVALUATION AND RESULTS
A. Evaluation Metrics

To evaluate our approach, we consider both accuracy and
efficiency:

e Accuracy (%): Classification accuracy on the SST-2
validation set.

o Model Size (MB): Disk size of serialized models (im-
portant for edge deployment).

o Parameter Count: Total trainable weights (effective
count in sparse models).
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Fig. 2. Validation accuracy of DistilBERT across epochs during fine-tuning
on SST-2.

o Sparsity (%): Fraction of weights pruned (e.g., 50%).

o Inference Latency (ms): Time to infer batch size 1 and
32 on an Intel i5 CPU using TensorFlow and TFLite
backends.

B. Results and Analysis

Our optimized model achieves a favorable balance between
performance and efficiency. As shown in Fig. 3, the accuracy
drop from 91.3% (DistilBERT) to 90.8% (DistilBERT-Optim)
is minimal ( < 0.5%), while reducing latency from 50ms to
20 ms.

Accuracy on SST-2 Inference Latency (SST-2)

100
91% 90% 100 ms

62 ms

Accuracy (%)
Latency (ms per input)

BERT-base DistilBERT  Optimized DistilBERT BERT-base DistilBERT  Optimized DistilBERT

Fig. 3. Performance vs. Efficiency: Accuracy and latency of BERT-base,
DistilBERT, and our optimized DistilBERT model.

Table II shows the effect of each optimization step

TABLE II
IMPACT OF COMPRESSION STAGES

Variant Accuracy (%) | Size (MB)
DistilBERT (Baseline) 91.3 250
Pruned-only 88.5 ~200
Quantized-only 90.5 ~63
Pruned + Quant (No KD) 87.0 ~50
Pruned + Quant + KD (Ours) 90.1 45

C. Inference Cost Comparison

To quantify computational efficiency, we estimate the
floating-point operations (FLOPs) required per inference
across model variants. As shown in Fig. 4, BERT-base incurs
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approximately 20 billion FLOPs per sentence. DistilBERT
reduces this to around 9.8 billion FLOPs. Our pruned model
further halves the requirement to 4.9 billion, while quanti-
zation brings it down to 3.0 billion. The full optimization
pipeline (pruning + quantization + distillation) achieves the
lowest cost at approximately 2.3 billion FLOPs—an overall
8.7x reduction compared to BERT-base.
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Fig. 4. Approximate FLOPs per inference for different models. Our opti-
mized model achieves a ~4 X reduction compared to DistilBERT and ~9x
compared to BERT-base.

These results confirm that combining pruning, quantization,
and distillation retains task performance while achieving ~8x
size reduction and ~2.5x latency improvement—ideal for
edge deployment. Similar trade-offs have been validated in
prior work such as TinyBERT [4] and MobileBERT [2].

D. Real-World Applicability

DistiBERT-Optim enables real-time NLP inference on
resource-limited hardware like mobile CPUs, achieving ~90%
accuracy with low memory usage and compute. This extends
the utility of Transformer-based models to energy- and latency-
sensitive applications such as mobile assistants and on-device
sentiment monitoring.

VI. CONCLUSION

This work presents an efficient optimization pipeline for
deploying DistilBERT on edge devices, using a unified ap-
proach of pruning, quantization, and knowledge distillation.
Our final model, DistiIBERT-Optim, is approximately 8x
smaller and 2-3x faster than the original DistilBERT, while
retaining over 99% of its classification accuracy on the SST-2
dataset. These findings emphasize that large-scale language
models can be compressed for privacy-aware, low-latency,
offline inference. As Transformer-based models evolve, such
compression frameworks will be vital in ensuring ubiquitous
NLP—from cloud servers to mobile devices and embedded
systems.

VII. FUTURE WORK

While our approach successfully compresses DistilBERT
for edge deployment, several directions remain for future
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exploration. Automated compression using neural architecture
search (NAS) or adaptive pruning could optimize architectures
beyond manual design. Incorporating early-exit mechanisms
may further reduce inference time by adjusting inference depth
based on the complexity of the input. Additionally, generaliz-
ing this pipeline to domains involving semantic understanding,
such as QA systems, entailment classification, or entity detec-
tion, as well as to multilingual models like mBERT or XLM-R,
could validate its robustness across domains. Exploring com-
binations of compression techniques—such as multi-teacher
distillation or hardware-aware quantization—may also unlock
greater efficiency for deploying complex models on resource-
constrained devices.
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